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On the equivalence between the impact parameter 
and transverse momentum space formalisms for the 
Drell-Yan process 

H F Jones and J Wyndham 
Physics Department, Imperial College, London SW7, UK 

Received 18 December 1980 

Abstract. We make extensive use of the Mellin transform technique to effect the Fourier- 
Bessel transformation between the impact parameter and transverse momentum space 
formulations of the Drell-Yan process for q: << q 2 ,  thereby demonstrating the complete 
equivalence between the two schemes. 

1. Introduction 

The Drell-Yan process, in which one observes an 1'1- pair originating via a massive 
photon from qq annihilation, has been one of the most widely discussed topics within 
the framework of perturbative QCD in recent years. For large transverse momentum 
(q;  - q 2 ) ,  lowest-order perturbation theory may be used (Kajantie and Raitio 1978, 
Altarelli et a1 1978a, b, Fritzsch and Minkowski 1978) to calculate the q T  distribution of 
the lepton pair. However, in the regime of restricted transverse momentum (q; << q 2 )  
resummed perturbation theory must be used to cope with large logarithms of the form 

The first calculation of the transverse momentum distribution in this regime was 
performed by Dokshitser et a1 (1980) in the framework of ladder diagrams in momen- 
tum space. The result gave the cumulative cross section 

ln(&q2). 

to leading logarithmic (LL) accuracy as the product of the two structure functions 
evaluated at p +  and a double logarithmic form factor T2(p: /q2 ) .  Subsequent cal- 
culations (Lo and Sullivan 1979, Soper 1980, Ellis and Stirling 1980) showed that the 
form factor was incorrect and should be replaced to double logarithmic accuracy by 
S 2 ( p + / q 2 ) ,  the square of the Sudakov form factor (SFF). This correction has now been 
incorporated in the computation, (Dokshitser et a l ) ,  and the final formula given as 

This structure, including the quark distribution functions, has been verified in lowest- 
order perturbation theory (Ellis and Stirling 1980, McKitterick 1980, Jones and 
Wyndham 1980). When full account is taken of the effect of the running coupling 
constant, S takes on a modified form, given in Ellis and Stirling (1980). 
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In many ways the formulation in the space of the impact parameter b is more 
transparent. In particular, the exponentiation of soft-gluon emission occurs directly in 
b rather than kT space. This was the approach taken by Parisi and Petronzio (1979), 
namely to evaluate the eikonal factor x ( b )  as the Fourier-Bessel transform (FBT) 

of the lowest-order single-gluon emission cross section, exponentiate and then 
perform the inverse transform, after integrating I& up to p ;  << q2. To LL accuracy this 
gives the Sudakov form factor squared, in agreement with (1.1). Including ?he effect of 
the distribution functions, Parisi and Petronzio proposed the following expression for 
the cross section in impact parameter space: 

where G(b2, q2) is the exponentiated eikonal factor, and 6 is the FB? of u i l  du/dq$. 
This formula has subsequently been confirmed in the ladder diagram approach (Jones 
and Craigie 1980, Collins 1980). 

It is clearly important to be able to make the transition between these two 
formulations. To some extent this was accomplished in Parisi and Petronzio (1979), at 
least for the double logarithmic form factor, using arguments of a rather heuristic 
nature, It is the aim of the present paper to set these calculations on a firmer footing, 
using the machinery of the Mellin transformation, which allows one to control the 
approximations and in principle to calculate non-leading corrections. The results to 
leading order agree with those obtained by Parisi and Petronzio, and show the complete 
equivalence between the two formulations, as given by equations (1.1) and (1.2). 

In 5 2 we consider the fixed coupling consJant case. Here there are two regimes of 
pT, separated by Js e-n/2n: it is onlyfor p r >  Js e-;7/2n that equation (1.1) is reproduced. 
In § 3 we go on to incorporate the running coupling constant appropriate to QCD. Again 
there are two distinct regimes of pT, this time separated by the scale parameter A. 
Section 4 concludes the paper with a brief discussion of our results. 

2. Fixed coupling constant 

2.1. Evaluation of the eikonal factor 

In this section we will consider the case of a fixed coupling constant as in QED. Following 
the procedure used by Parisi and Petronzio (1979), we must first evaluate the eikonal 
factor denoted by ~ ( h ) ,  the FBT of the O ( a )  contribution to the normalised differential 
cross section. That is 

l S  
x ( b )  = - d2kT exp(ikT * b)v(kT) 

T o  

where 

v ( ~ T )  E (l /uo(s))  du"'/dk$, 

the superscript (1) referring to the single photon contribution to duldk;.. 
Calculation of the lowest-order Feynman diagrams gives 

(2.1) 

(2.2) 
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where the subscript ' + ' is defined by 

Note that (2.1) is not a complete FBT, in the sense that lkT1 only goes up to 4s and not 
infinity. We may rewrite equation (2.1) as 

4cu In x 
T o  x 

x ( b ) = - - /  dx-(l-JO(Ax)) 

where we have defined x = ICT/& and A = b&. 
A heuristic approach (Parisi and Petronzio 1979) to the evaluation of (2.5) in the 

relevant region of large A wuuld be to approximate Jo(Ax) as l -B(x-  l / A ) .  The x 
integral now only goes down to l/A, and x ( b )  becomes - ( ~ c Y / T )  ln' A. To verify this 
result we consider the Mellin transform (MT) of (2 .5)  with respect to A : 

m 

f ( j )  = dA A'x(b, A ) .  
0 

Consonant with the &function argument, we first take the MT of the Bessel function 
inside the x integral. Integration by parts gives 

- ( j + l )  a: 1 dY Y'+' J l ( Y ) ,  (2.7) loa: ] + I  0 

X 
dA A ' ( 1  -Jo(Ax)) =-y 

the latter integral being evaluated using (Gradshteyn and Ryzhik 1965) 

analytic for -3 < j < - 1. 
We are now left with an x integral of the form 

which is convergent for j < - 1. 
Combining (2.7) and (2.9), we obtain 

(2.10) 

In the j plane there is a strip -3 < j < -1 for which expression (2.10) is analytic. The 
limiting form of f ( A )  as A + 00 is obtained by closing the contour of the inverse 
transform ( 1 / 2 ~ i )  5 djA-'-'f(j) to the right of the strip, picking up the leading triple 
pole at j = -1, which gives f ( A )  = - ( 2 a / ~ )  In2 A, i.e. 

x ( b )  = -(a/2n-) In' (b's). (2.11) 

Note that since we evaluated f ( j )  exactly we could have performed the inverse 
transform as accurately as we like. Though not necessary, one may modify the 
argument of the logarithm to satisfy formally the boundary condition ~ ( 0 )  = 0, taking 
(Parisi and Petronzio 1979) x ( b )  = -(cu/27r) ln2(1 + b's). 
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2.2. Inversion of exponentiated form 

Exponentiation of the eikonal factor (2.1 1) gives the object denoted by G(b2,  s). We 
now show that the inverse Fmof G(b2,  s), after integration in k; up top? << s, yields the 
SFF squared to LL accuracy. The quantity to be evaluated is 

= jP’ dk; 1 d2b exp(-ib * kT) exp[,y(b)]. 

Following the azimuthal integration, we perform the kT integration 

4 T  0 

which reduces (2.12) to 

(2.12) 

(2.13) 

(2.14) 

where x = bpT and c2 = &/S. 
A mean-value argument, based on the support of J l (x)  and the slowly varying 

nature of ln2(x2/c2), heuristically leads to an answer e x p [ - ( a / 2 ~ )  ln2c2] for (2.14). To 
verify this result we redefine y = x/c in (2.14) and take the MT with respect to c using 
(2.8). The remaining y integral is given by 

m 
7r lo dyy-’-2 exp(-2a In y ) = 7 exp[(j + 1)2~/8cul. 

T (2a 1 
Inverting the MT, we obtain 

(2.15) 

(2.16) 

w h e r e - 3 < p < - i .  

pT+ 0, (b) PT small but (a2/.rr2) In2(&/$)< 1. 

pole at j = -3, giving 

In the case of a fixed coupling constant there are two regimes to consider: (a) 

(a) To determine the leading term as pT+ 0, we simply pick up the residue from the 

or 

(2.17) 

(2.18) 

which is in slight diagreement with Parisi and Petronzio (1979). 
(b) To evaluate (2.16) for pT small, but 

PT/Sli2> e-vi2a, (2.19) 
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, equation (2.16) can be - ( j + l )  - (  j + l )  Inc we use the saddle-point method. Writing c 
rewritten as 

= e  

dpexp - iplnc--p 
2 1 

8a X(PT)=- 
( ~ L Y ) ~ ’ ~  ( 

where p was taken as -1, and we have neglected the factor 2”’ [r(i+ij)/r($-ij)], 
which does not contribute to the LL result?. 

To make the integral into a simple Gaussian we must deform the contour; in doing 
this we will not meet any poles provided that ( 2 a / ~ )  1 In c l  < 1, which is the origin of the 
constraint (2.19). 

Hence (2.20) becomes 

(2.21) 

which is precisely the square of the SFF, the result being valid for <PT/&. 

2.3. Inclusion of structure functions 

To conclude this section we now include the structure functions. Following Parisi and 
Petronzio (1979) we take 

k=,-(x, b2) =F,-(x, 1/b2),  (2.22) 

which.can be justified in the formulation of Jones and Craigie (1980). For a fixed 
coupling constant, the structure functions may be represented as 

(2.23) 

where yII is the anomalous dimension of the electron field. Equation (1.2) may now be 
written as 

(2.24) 

Omitting the sums over n, m and q, 

Writing (b2m2) y ~ ~ + y ~ ~  = ( p ~ / m 2 ) - Y ~ ~ - y , ~ ( x 2 ) y ” + y ~ ,  we can essentially proceed along the 
same lines as before. After the azimuthal and kT integrations 

2 

= (2) PT - y n - y m  Joa3 dx J 1 ( x ) ( x 2 )  yn+yrn exp[ - ( a /2~)  ln2(x2/c2)1 (2.26) 

where c2 = p+/q2. 

f In the saddle-point method this factor is evaluated at j = -1 + (4a/71) In c, and by (2.19) is therefore of order 
one. 
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We again define y = x/c, and take the MT with respect to c, 

analytic for - 3 - 2 ( y n + y m ) < j <  - i -2(yn  +ymj .  

this being equivalent to (2.20) if we again neglect the factor 
The y integral is now the same as (2.15). To recover C ( p + )  we take the inverse MT, 

1 
2;+1+2(y,,+ymj r ( Z + 2 j + , Y n  + Y m )  r(1 1. 2 - 2 1 - Y n - Y m ) ’  

Restoring the sums over n, m and q gives us equation (1.1) for E(&). 

3. Running coupling constant 

3.1. Evaluation of eikonal factor 

Following the arguments of Parisi and Petronzio (1979), we introduce the running 
coupling constant by replacing the fixed coupling constant a in equation (2.3) by 
($a(k$)t  where a(k:) is given (for four flavours) by 

a (k;) = 1 2 ~ 1 2 5  ln(k$/A2). (3.1) 

The corresponding expression for Y (kT) now becomes 

and hence 

(3.2) 

(3.3) 

Note that it only makes sense (Parisi and Petronzio 1979) to integrate down to M 2  b A2, 
thus avoiding the singularity, since for 0 G k: G M 2  perturbation theory, and hence 
expression (3.2), for v(kT), is not valid. Arguing in the same manner as Parisi and 
Petronzio (1979) (and by using Jo(x) - 1 -Sx2), we may assume that the contribution 
from this region is of O(b2M2), and may therefore be neglected in the region of interest, 
namely 

l /q2c< b2cc l /h2.  (3.4) 

Rewriting (3.3) in a form analogous to (2.5), we find 

(3.5) 

where E =MIA b 1, x2 = k+/q2 and u2 = q2 /A2  + CO is treated as an independent 
variable from A 2  = b2q2. 

+ It has been argued by McKitterick (1980) that the relevant momentum scale is k 2 ,  the virtuality of the quark 
propagating to the quark-photon vertex, rather than k;.  
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The same heuristic @-function argument as given in Q 2.1 will lead to 

a result we now verify. 
To extract the leading behaviour of X ( b )  we must take the MT with respect to both A 

and In (T. However, we must ensure that E / u  < 1, implying In (T > In E. 

Repeating the A integration as in 9 2, the double MT now becomes 

where [ = In U, and the analytic strip in the j plane is again -2 < j < -1. 
Inverting the order of the x and 5 integrations leaves a C integral of the form 

valid for k < 0, defining the right-hand boundary of the analytic strip in the k plane. We 
are left with an x integral of the form 

1 

dxx-"'2ilnx[1n(~)] kZFl (1, -k ;  -k +1; ~ (3.8) 

At the upper limit, the argument of the hypergeometric function vanishes and the 
integral is then essentially zero. The pole structure comes from the lower limit, where 
the argument of the hypergeometric function tends to 1. To pick out the poles of (3.8) 
we must first write the HGF as a series (Abramowitz and Stegun 1970) 

2 F 1 (  1, -k ; - k + 1 ; t ) 

and pick out the leading term as z + 1, giving 

(3.10) 

The structure of (3.8) is such that we can replace [ l n ( ~ / x ) ] ~  by [1n(l/x)lk without 
introducing spurious poles provided we keep to the right of the line k = -2. This 
condition gives us the left-hand boundary of our analytic strip in the k plane. Further, 
in order not to encounter these spurious E = 1 poles we must close the contour to the 
right. 

Equation (3.8) now becomes 

= - (y+$( -k )+ ln lne )  Jo dy e ( i - l )yyk+ l+J  d y e  ( j + l ) y  y k + l  l ny  (3.11) 
0 
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where we have put E = 1 in the second integral, which may be evaluated using 
(Gradshteyn and Ryzhik 1965) 

(3.12) 

So equation (3.6) now becomes 

f ( j ,  k ) = - - ___ 
32 2j+l r(2+lj) r ( k  +2)  
25 j + l  r ( i - i j ) [ - ( j+ l ) ]k+2  

We will first perform the inverse transform in k. By closing the contour to the right and 
using the recursion relation $ ( z  + 1) = $ ( z )  + 1/z, we generate a series for f ( j ) :  

(3.14) 

incorporating the contributions of all the poles for k 2 0, which is necessary since the 
product [ ( j  + 1) tends neither to infinity nor zero. However, since A +CO,  we need only 
pick up the leading poles in the j plane, namely all the poles at j = -1, so the expression 
for x ( b )  becomes 

(3.15) 

in agreement with Parisi and Petronzio (1979). 

3.2. Inversion of exponentiated form 

To generate the form factor in momentum space, we must now exponentiate (3.15) and 
evaluate 

1 /.I 

(3.16) 

Note that E is always, by definition, integrated from 0 s k: s p: ,  but that Ib 1 now only 
goes up to l /h  by similar arguments to those in momentum space, pT now being 
replaced by b-l. The kT and azimuthal integrations in (3.16) are equivalent to those in 
(2.12), leaving a b integration of the form 

I E(&) = - 1'' dk: I d2b exp(-ib * k ~ )  ex(b).  
4%- 0 

where c2 = p % / q 2 ,  [ 2  = &/A2 and x = bpT as before. 
Following the procedure of 8 2.2, we scale out a variable that will ultimately leave an 

x integration we can evaluate. In (3.17) this variable is 6, so making the transformation 
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y = x/& (3.17) becomes 

(3.18) 

where 77 = c / f  + 0 and is treated as an independent variable from 5. 
Taking the MT with respect to .f using (2.8) leaves a y integration of the form 

Inverting the MT as in (2.16) gives 

valid for -3 < p < -3. 
We can evaluate this integral in two momentum regions as in § 2.2. 
(a) P T + O .  

Only the leading pole at k = - 3 is required; the residue gives 

where A = E. 

differentiation, 
Using Stirling's approximation for the gamma function for large ln ( l /v )  gives, after 

in agreement with the saddle-point evaluation of Parisi and Petronzio (1979). 

In this case the entire integral must be evaluated since the variable 5 is not small. We 
again drop the factor 2 kc' r($+ ik)/I'($-$k), which does not contribute to the LL'S, and 
take p = -1. Equation (3.20) then becomes 

(b) p~ small but p T / h  > 1. 

(3.23) 

where k + 1 = ip. 

Ryzhik 1965) 
Equation (3.23) can be evaluated using the standard integral (Gradshteyn and 

(3.24) 
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which finally gives 

(3.25) 

in agreement with Ellis and Stirling (1980) and Parisi and Petronzio (1979)f 

3.3. Inclusion of structure functions 

An advantage of the above method is that we can now derive the momentum space 
result for equation (1.2) without any additional difficulty. 

For the QCD structure functions we use the representation 

(3.26) 

where y ,  is the anomalous dimension of the quark field. 

(-ln b2A2)-yn-ynt, (3.18) is modified to 
Proceeding along the same lines as before, but now carrying an extra factor 

Taking the M T  with respect to 5, performing the y integration and inverting the MT gives 

(3.28) 

which, again using (3.24), exactly reproduces the momentum space result (1.1) with S2 
given by (3.25). 

4. Conclusions 

The infrared resummation necessitated by a restriction of the transverse momentum in 
the Drell-Yan process is most easily carried out in impact parameter space. However, 
the results must ultimately be transformed into transverse momentum space in order to 
make contact with experiment. In this paper we have shown how the required 
transformations can be systematically evaluated by the use of Mellin transforms, 
leading to results in complete agreement with those of the more difficult calculations 
performed directly in pT space. 

The Mellin transform has been employed in a somewhat unusual way, in that the 
contour integral appearing in the inverse Mellin transform has in several places been 
evaluated exactly rather than in terms of the leading pole. To leading order the net 
result of some quite involved manipulations is to confirm the remarkably simple 

+ T h e  direct momentum-space calculation of Ellis and Stirling (1980) leads to an additional, non-leading 
factor r ~ n ( q ~ / , i ~ ) / ~ n ( p + /  i2)~3'2"'6'25 . To generate such a term we would require v(kT) to next to LL 
accuracy. 



Equivalence between b and pT space for D Y  1467 

correspondence (Parisi and Petronzio 1979) 

(4.1) 
Within the Mellin transform framework, the Fourier-Bessel transformations can be 

evaluated to greater accuracy by picking up the contributions from lower-lying poles 
and incorporating the effects of the gamma functions. However, it should be borne in 
mind that such corrections are only meaningful when carried out in parallel with an 
evaluation of the input v ( k T )  to a corresponding level of accuracy. 

With the appropriate substitutions our results are clearly applicable to the crossed 
processes y v + A  + B + X  and ece-+ A + B  + X .  The same techniques can also be 
applied to the one-dimensional Fourier transforms arising in the case of the pout 
distribution in hadron production at large pT (Jones and Craigie 1980). 
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